

The Arctic climate is rapidly changing

Arctic surface temperature is increasing at a rate outpacing the rest of the globe, and the projected Arctic temperature response to increasing CO₂ is larger than that for the tropics.

Studying the Arctic climate presents unique challenges.

- The largest intermodel spread in projected surface temperature warming is found in the Arctic.
- Satellite observations are difficult, lack of in-situ measurements

Understanding and reducing intermodel spread in the simulation of the surface energy budget can improve future projections.

Radiative and non-radiative feedback processes lead to polar warming amplification

Use the concept of cloud radiative forcing to evaluate the influence of clouds on shortwave and longwave fluxes at the surface.

$$CRE = (SW \downarrow - SW \downarrow_{clr-sky}) \cdot (1 - \alpha) + (LW \downarrow - LW \downarrow_{clr-sky})$$

"Cloud Radiative Effect"

- where $\begin{cases} \cdot \text{SW}\downarrow, \text{LW}\downarrow \text{ are all-sky fluxes} \\ \cdot \text{SW}\downarrow_{\text{clr-sky}}, \text{LW}\downarrow_{\text{clr-sky}} \text{ are clear-sky fluxes} \\ \cdot \alpha \text{ is the albedo calculated using clr-sky} \\ \text{sw fluxes}, \text{SW}\uparrow_{\text{clr-sky}}/\text{SW}\downarrow_{\text{clr-sky}} \end{cases}$

Terms in the equation represent cloud influence on solar and infrared radiation

$$(SW \downarrow - SW \downarrow_{clr-sky}) \cdot (1 - \alpha)$$

Shortwave cloud radiative forcing (SW CRE)

Usually negative because downwelling solar flux decreases with the presence of clouds

Magnitude of SW CRE is smaller over a white surface than over ocean

$$(LW\downarrow - LW\downarrow_{clr-sky})$$

Longwave cloud radiative forcing (LW CRE)

Usually positive because downwelling longwave radiation increases with the presence of clouds

Longwave Surface Fluxes

Longwave Cloud Radiative Effect

The large discrepancy in wintertime cloudiness is due to the representation of low clouds (Karlsson and Svensson 2011)

What causes differences in LW CRE?

$$LW \ CRE = LW \ all - LW \ cre = N \cdot (F \ cld, lw - F \ clr, lw)$$

$$\delta LW \ CRE = \delta N \cdot (F \ cld, lw - F \ clr, lw) + N \cdot \delta F \ cld, lw - N \cdot \delta F \ clr, lw$$

$$Clr - Sky \ Component$$

$$Cloud \ Property \ Component$$

$$Cloud \ Property \ Component$$

$$\delta LW \ CRE$$

$$\delta N$$

$$\delta N$$

$$\delta LW \ CRE$$

$$\delta N$$

$$\delta N$$

$$\delta LW \ CRE$$

$$\delta N$$

$$\delta N$$

$$\delta N$$

$$\delta N$$

$$\delta LW \ CRE$$

$$\delta N$$

(grey shaded region is the ensemble mean +/- one standard deviation)

For some models, changes in LW CRE are closely coupled to changes in cloud fraction

Shortwave Surface Fluxes

Shortwave Cloud Radiative Effect

Net Cloud Radiative Effect

Regressions between cloud fraction and net CRE show whether a model is more strongly forced by a **cloud albedo effect** or a **cloud greenhouse effect**

How will Arctic surface temperature change in the future?

Future surface temperature is obtained using the RCP 8.5 simulation (Radiative Concentration Pathway 8.5, a projection dataset with an 8.5 W/m² forcing)

RCP 8.5 runs from 2006 to 2100. Temperature change is calculated as follows:

 ΔT_{surf} = Mean T_{surf} for the last 20 years of the simulation - Mean T_{surf} for the first 20 years of the simulation

(grey shaded region is the ensemble mean +/- one standard deviation)

The sensitivity of a model to changes in clouds is correlated to projected surface temperature change

The slope of the regression line from the δN vs δLW CRE is compared to projected ΔT_{surf} for CMIP5 models and C3M observations

